Difference between revisions of "Display Technology"
From esoterum.org
Line 51: | Line 51: | ||
*(1.8) [http://delivery.acm.org.ezproxy1.lib.asu.edu/10.1145/1070000/1065741/p612-iranli.pdf?key1=1065741&key2=9956552711&coll=portal&dl=ACM&CFID=10949569&CFTOKEN=52685087 Iranli, Pedram, DTM: Dynamic Tone Mapping for Backlight Scaling, June 2005] | *(1.8) [http://delivery.acm.org.ezproxy1.lib.asu.edu/10.1145/1070000/1065741/p612-iranli.pdf?key1=1065741&key2=9956552711&coll=portal&dl=ACM&CFID=10949569&CFTOKEN=52685087 Iranli, Pedram, DTM: Dynamic Tone Mapping for Backlight Scaling, June 2005] | ||
− | *(1.5) [http://delivery.acm.org.ezproxy1.lib.asu.edu/10.1145/590000/581664/p218-gatti.pdf?key1=581664&key2=6805642711&coll=portal&dl=ACM&CFID=10949569&CFTOKEN=52685087 Gatti, Acquaviva, Benini, Ricco’, Low Power Control Techniques For TFT LCD Displays] | + | *(1.5) [http://delivery.acm.org.ezproxy1.lib.asu.edu/10.1145/590000/581664/p218-gatti.pdf?key1=581664&key2=6805642711&coll=portal&dl=ACM&CFID=10949569&CFTOKEN=52685087 Gatti, Acquaviva, Benini, Ricco’, Low Power Control Techniques For TFT LCD Displays, 2002] |
*(1.3) [http://delivery.acm.org.ezproxy1.lib.asu.edu/10.1145/290000/280881/p173-benini.pdf?key1=280881&key2=5196552711&coll=portal&dl=ACM&CFID=10949569&CFTOKEN=52685087 Benini, Hodgson, Siegel, System-level Power Estimation And Optimization, August 1998] | *(1.3) [http://delivery.acm.org.ezproxy1.lib.asu.edu/10.1145/290000/280881/p173-benini.pdf?key1=280881&key2=5196552711&coll=portal&dl=ACM&CFID=10949569&CFTOKEN=52685087 Benini, Hodgson, Siegel, System-level Power Estimation And Optimization, August 1998] |
Revision as of 00:35, 5 March 2007
Contents
Paper Search
"LCD power model" search on ACM
Display Technologies
Flexible Displays
Electrophroetic Displays
- Some current characterization for electrophoretic suspension fluid.
Display Power
- LCD greyscale single pixel power consumption formula
- (1.6) Iranli, Lee, Pedram, Backlight Dimming in Power-Aware Mobile Displays, 2006
- (1.4) Cheng, Chao, Minimization for LED-backlit TFT-LCDs, 2006
- Addresses independant scaling of three color LED backlights based on image histogram
- (1.7) Zhong, Jha, Graphical User Interface Energy Characterization for Handheld Computers, October 2003
- 3.1: Whenever there is a screen change, the processor generates new data for the changing screen pixels and stores them into the framebuffer. This implies a higher energy consumption with increased temportal changes in the screen. Meanwhile, to maintain a screen on the LCD, the LCDC must sequentially read screen data from the frame-buffer and refresh the LCD pixels even when there is no screen change.
- 3.1: The display itself consists of several parts: LCD power circuitry, a front light, and an LCD. The LCDs used in the systems we studied are color active thin film transistor (TFT) LCDs. In such LCDs, each pixel has three comonents: R, G and B, signifying red, green and blue, respectively. Liquid crystals for each component are independently oriented by two polarizers, which are connected to a storage capacitor. The capacitor is in turn charged and discharged through a TFT to accommodate screen changes. Moreover, the capacitor must be refreshed at a high rate to maintain an appropriate voltage across the polarizers so that the corresponding liquid crystals remain properly oriented.