Difference between revisions of "CSE550 Combinatorial Algorithms/Intractability"

From esoterum.org
Jump to: navigation, search
Line 40: Line 40:
 
:-> [http://www.sce.carleton.ca/faculty/chinneck/po/Chapter10.pdf Chapter 10. Network Flow Programming]
 
:-> [http://www.sce.carleton.ca/faculty/chinneck/po/Chapter10.pdf Chapter 10. Network Flow Programming]
 
*Robert Fourer, [http://www.att.net/s/editorial.dll?pnum=1&bfromind=7406&eeid=5535987&_sitecat=1522&dcatid=0&eetype=article&render=y&ac=0&ck=&ch=ne&rg=blsadstrgt&_lid=332&_lnm=tg+ne+topnews&ck= AMPL: "A Mathematical Programming Language"]
 
*Robert Fourer, [http://www.att.net/s/editorial.dll?pnum=1&bfromind=7406&eeid=5535987&_sitecat=1522&dcatid=0&eetype=article&render=y&ac=0&ck=&ch=ne&rg=blsadstrgt&_lid=332&_lnm=tg+ne+topnews&ck= AMPL: "A Mathematical Programming Language"]
 +
*[http://center.uvt.nl/staff/haemers/reader05ico.pdf LP formulations] (covering, packing, partition) (non-linear information)

Revision as of 15:10, 27 November 2007

Resources

-Unimodularity ensures that the solution to an LP will always be integer if all of the costs and constraints are also integer

HW 6

1. 2-SAT is in NP
2. A sub-optimal solution to TSP is a Hamiltonian Cycle.
3. 3SAT reduction to NAESAT
4. Finding disjoint paths with different path-costs: Complexity and algorithms

HW 7

1.
-Theorem 1.2 (Kumar and Li, 2002) Any asymmetric TSP on n locations can be reducedto a symmetric TSP on 2n locations

Midterm

Q1

Q4

Project

-Chapter 7. LP in Practice
-> Chapter 10. Network Flow Programming