Difference between revisions of "Display Technology"
From esoterum.org
Line 29: | Line 29: | ||
:LCD greyscale single pixel power consumption formula | :LCD greyscale single pixel power consumption formula | ||
:[13](1.2) [http://ieeexplore.ieee.org.ezproxy1.lib.asu.edu/iel1/16/10174/00477590.pdf?tp=&arnumber=477590&isnumber=10174 (13) Aoki, Dynamic Characterization of a-Si TFT-LCD Pixels] | :[13](1.2) [http://ieeexplore.ieee.org.ezproxy1.lib.asu.edu/iel1/16/10174/00477590.pdf?tp=&arnumber=477590&isnumber=10174 (13) Aoki, Dynamic Characterization of a-Si TFT-LCD Pixels] | ||
− | *(1.9)[http://delivery.acm.org.ezproxy1.lib.asu.edu/10.1145/1150000/1147064/p604-iranli.pdf?key1=1147064&key2=4296552711&coll=portal&dl=ACM&CFID=10949569&CFTOKEN=52685087 Iranli, Lee, Pedram, Backlight Dimming in Power-Aware Mobile Displays] | + | *(1.9) [http://delivery.acm.org.ezproxy1.lib.asu.edu/10.1145/1150000/1147064/p604-iranli.pdf?key1=1147064&key2=4296552711&coll=portal&dl=ACM&CFID=10949569&CFTOKEN=52685087 Iranli, Lee, Pedram, Backlight Dimming in Power-Aware Mobile Displays] |
*(1.4) [http://ieeexplore.ieee.org.ezproxy1.lib.asu.edu/iel5/11109/35624/01688869.pdf?tp=&arnumber=1688869&isnumber=35624 Cheng, Chao, Minimization for LED-backlit TFT-LCDs, 2006] | *(1.4) [http://ieeexplore.ieee.org.ezproxy1.lib.asu.edu/iel5/11109/35624/01688869.pdf?tp=&arnumber=1688869&isnumber=35624 Cheng, Chao, Minimization for LED-backlit TFT-LCDs, 2006] | ||
:Addresses independant scaling of three color LED backlights based on image histogram | :Addresses independant scaling of three color LED backlights based on image histogram |
Revision as of 15:57, 1 March 2007
Contents
Paper Search
"LCD power model" search on ACM
Display Technologies
Flexible Displays
Electrophroetic Displays
Display Power
- LCD greyscale single pixel power consumption formula
- [13](1.2) (13) Aoki, Dynamic Characterization of a-Si TFT-LCD Pixels
- (1.9) Iranli, Lee, Pedram, Backlight Dimming in Power-Aware Mobile Displays
- (1.4) Cheng, Chao, Minimization for LED-backlit TFT-LCDs, 2006
- Addresses independant scaling of three color LED backlights based on image histogram
- (1.7) Zhong, Jha, Graphical User Interface Energy Characterization for Handheld Computers, October 2003
- 3.1: Whenever there is a screen change, the processor generates new data for the changing screen pixels and stores them into the framebuffer. This implies a higher energy consumption with increased temportal changes in the screen. Meanwhile, to maintain a screen on the LCD, the LCDC must sequentially read screen data from the frame-buffer and refresh the LCD pixels even when there is no screen change.
- 3.1: The display itself consists of several parts: LCD power circuitry, a front light, and an LCD. The LCDs used in the systems we studied are color active thin film transistor (TFT) LCDs. In such LCDs, each pixel has three comonents: R, G and B, signifying red, green and blue, respectively. Liquid crystals for each component are independently oriented by two polarizers, which are connected to a storage capacitor. The capacitor is in turn charged and discharged through a TFT to accommodate screen changes. Moreover, the capacitor must be refreshed at a high rate to maintain an appropriate voltage across the polarizers so that the corresponding liquid crystals remain properly oriented.